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Information Functions of the Generalized Partial Credit Model

ABSTRACT

The concept of information functions developed for dichotomous item
response models is adapted for the partial credit model. The
information function is explained in terms of the model parameters
and scoring functions. The relationship between the item
information function and the expected score function is also
discussed. The information elmactionis then used to investigate the
effect of collapsing and rek.oding categories of polytomously-scored
items of the National Assessment of Educational Progress (NAEP).
Finally, the MEP writing items are calibrated and the item and test
information is used to discuss desirable properties of polytomous
items.

Index terms: item response model
polytomous item response model
partial credit model
information function
NAEP
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Tests have been basically constructed to measuxe the ability levels of
test trkers. Since the information function based on the item response theory
pravi4es valuable information about the precision of measurement at a
specified ability level, the information function has been widely used for
various applications that are central to the field of measurement (Hambleton
and Swaminathan, 1985). The applications of the information function for
dichotomously-scored test items have been extensively studied, but the
investigation of the polytomous item response model using the concept of the
information function has not been fully explored yet. The partial credit
model is frequently used for analyses of polytomous cognitive and affective
response data. In this paper, the advantages of the applications of the
partial credit model are demonstrated and comp4rod to the dichotomous item
response model by applying the informatiaa function. The cautionary remarks
about the uncritical applications of the partial credit model are also
mentioned.

The Generalized Partial Credit Model

The generalized partial credit model (Muraki, 1992) is formulated on the
assumption that the probability of choosing the kth category over the k-lth
category is governed by the logistic dichotomous response model, that is,

P(0) exp (Dai(8-bik)]
2ikik-L,k p3 .k..1 (8) +Pjk (13) 1 +exp Wei (8-bjk)

(1)

where k-2, 3, ..., mj. The generalized partial credit model is, then, written
as

and

Pik (0)

E exp IE z3,(0)]

exp [i (8)

Zjk (e) = Da3(0-kik) = Daj(e-bj.dk)

(2)

(3)

where D is a scaling constant that puts the 0 scale in the same metric as the
normal ogive model (D-1.7), aj is a slope parameter, bjk is an item-category,
bj is an item location parameter, and dk is a category parameter.

If the number of response categories is mj, only mj-1 category parameters
can be estimated. Any one of the mj category threshold parameters can be
defined as any value. This is because the term including the parameter is
canceled out from both the numerator and denominator of the model (Muraki,
1992). We arbitrarily define dl 0.
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If a single Likert scale is used to evoke categorical responses for a set
of items, the hypothesis that the set of items share common category
parameters can be tested. If the assumption of a common set of category
parameters for those items is not found to be appropriate, we fit a model in
which category parameters differ between items. For both models, the notation
dk instead of dik can usually be used without confusion. A step-wise
application f' these two models to data was demonstrated by Muraki (1992).
The partial _edit model with a constant slope parameter was introduced by
Masters (1982). This model is a special case of the generalized partial
credit model in Equation 2. The comparison between these models was also
discussed by Muraki (1992).

For the generalized partial credit model, there is an indeterminacy in
the set of category parameters and location parameter. The following
constraint, called a location constraint, is imposed on the category
parameters within a categorical scale:

Edk = 0

The partial credit model contains the element ;1,4'(0), that is,

= E z,(e)

(4)

(5)

where Ziy(0) is definod by Equation 3. The sum of Z(0) in Equation 5 can be
written as

= Dai[ (k(e-bj) +tds,3

and the model above can be rewritten as

(e) = Dai[Tk(13-1,J) +KO

(6)

(7)

Andrich (1978) calls Tk and Ek the scoring function and the category
coefficient, respectively. For the partial credit model, the scoring function
Tk is a linear integer scoring function, that is, T.-(1, 2, 3, ..., mj) where
raj is the number of categories of item j.

The log-odds of the model probabilities Pj,k_1(0) and Pjk(0) can be
expressed as
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= Dai (71-Tk..1) (8-he) +40 (8)

Equation 8 shows that the log-odds becomes a monotonically increasing function

of the latent trait, 0, only when the incremental change in the scoring

function is used for successive categorical responses. The higher 8 value a

subject has, the more likely he/ahe responds to upper categories. In other

words, the partial credit model becomes a model for ordered categorical

responses only when the scoring function is increasing, that is, Tk>
for any k and aj>0. If the linear integer scoring function is used, the item-
category characteristic curves (ICCCs) of PjA,1(0) and Pjk(9) intersect at the

point bilk in the 0 scale. When a person's ability 0 is greater bik, the person

more likely chooses the kth category than the k-lth category. In this case,

the log-odds in Equation 8 is positive. The log-odds increases as ability

level increases. When a person's ability 0 is less than bik, the person more

likely chooses the k-lth category than the kth category. In this case, the

log-odds is negative. The odds of choosing the k-lth category compared to the
kth category increases as the ability level becomes lower.

The generalized partial credit model in Equation 2 can be rewritten,

using the scoring function and the category coefficient, as

oon .exp (Da, (Tk(e-b) +4]p
E exp [Dai (8-b1) Kc] ]
C.1

(8)

The model expressed by Equation 9 is similar to the nominal response

model (Bock, 1972). The relationship to the generalized partial credit model
is discussed by Thissen and Steinberg (1986). The scoring function also

provides a convenient notation for collapsing or recoding categorical

responses. For example, if the number of categorical responses of an item is

five, then a scoring function T can be specified as T-(1,2,3,4,5). If the

original response categories are czalapsed by combining the first and second

categories into one category, the mcdified scoring function T' can be written

as T' -(1,1,2,3,4). If this modification of the response categories is recoded
by treating the original fourth category as the fifth and the original fifth

as the fourth, the scoring function can be further modified to

T" -(1,1,2,4,3).

Information Function

The item information function, li(0), represents the information
contributed by a specific item j across the range of 9. The item information

for the polytomous item response model was proposed by Samejima (1974) as
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where

flj
(e) = E Tcpac(e)

The value of Tj(0) is called the expected score function. Thus, the item
information is the expected variance of scoring functions based on the model
probability along the 0 level multiplied by (Daj)2. Notice that the second
derivative of the logarithm of categorical probability, Pie(0), with respect
to 0 is invariant with the category k. For the case of dichotomous item
responses, Equation 11 can be simplified to

(8) = D2aj(TI-T2)2Pi1(8)Pj2(e)

where P32(0).-.1-Pj1(0).

Bock (1972) proposed defining the information due to the response in
category k of item j as a partition of the item information due to that
category, that is,

Ijk(e)

(12)

(13)

Equation 13 may be called the item-category information function. The item -

category information functions of Ii.k..1(0) and Ijk(0) intersect at the point
of bjk in the 0 scale.

The item information function can also be expressed as the summation of
the item-category information function:
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x(0) E .r,k(e) (14)

Finally, the test information function is defined as the summation of item
information functions:

(15)

Plotting the ICCCs of Pik(8) for ks-1, 2, ..., mj and their information
functions is an essential step to interpretation of the parameters of the
polytomous item response model. Figures 1,2, 3, 4, and 5 show plots of ICCCs
of the generalized partial credit model with three categorical responses,
where a3-1 and T-(1, 2, 3). The only differences among these items are the
values of the item-category parameters, bj. Figures 1 through 5 show five
items with 11.4-(0., 2., -4.), 112-(0., 2., -2.), hs-(0., 2., 0.), tu-(0., 2.,
2.), and 125-(0., 2., 4.), respectively.

Insert Figures 1, 2, 3, 4, and 5 about here

As shown in Figures 1 through 5, the third ICCC, Pj3(8), shifts to the
left along the 0 scale as the item-category parameter bilk changes from -4.0 to
4.0 because the intersection of the second and third ICCCs, Pj2(0) and Pi3(8),
moves from 4.0 to -4.0. Since the third category probability, Pi3 becomes
dominant over the 8 axis from -6.0 to 6.0, the expected frequency of the third
categorical response increases, assumtng-the latent trait is distributed
normally with the mean zero. As the third category probability moves from the
right to the left, the second category probability is being pushed downward.
The expected frequency of the second category decreases as the distance
between the second and third item-category parameters, b32 and bp, decreases.
The second and third item-category parameters are equal for item 4, and then
the order of these parameters are interchanged for item 5. As shown in Figure
5, the polytomous responses for item 5 become essentially dichotomous item
responses since the second category becomes a category not likely occurring as
a response.

Item-category information functions and item information functions of
items 1, 2, 3, 4, and 5 are shown in Figures 6, 7, 8, 9, and 10, respecttvely.
The item information of polytomous item responses is not necessarily unimodal
like that of dichotomous item responses. If the distance between the two
adjacent item-category parameters is large, like bj2 and b13 in Figure 6, the
information becomes lower at the middle range of the 9 scale. The loss of
information over the middle range of the 8 level becomes less noticeable as
the distance between these parameters decreases, as shown in Figure 6. When
the distance between bj2 and bj3 is 2.0, the item information function looks
unimodal, as shown in Figure 8. This item is the most desirable if the item
is designed to cover a wide range cf 0 for a group of subjects whose abilities

5
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are assumed to be normally distributed. If the order of these parameters is
interchanged, the item information peaks over a very short range of the lower
0 axis. Information at the higher ability levels is essentially lost. As
shown in Figure 10, the shape of the item information function resembles that
of dichotomous item responses. The plots of ICCCs and item and item-category
information functions of polytomously-scored items provide valuable item
analysis information.

Insert Figures 6, 7, 8, 9, and 10 here

The first derivative of tt?. expected score function with respect to B is

0' (0) sij

ae 2CO.

a' _= DajE (e) 2P,,(8)
0.1 (16)

Because the first derivative of the expected score function with respect to 0
in Equation 16 is always positive unless the slope parameter is negative, the
expected score function is a strictly increasing function of 0. The expected
score functions of items 1, 2, 3, 4, and 5 are plotted in Figure 11. The
expected function becomes steeper if the slope parameter value or the item
information increases. The slope of the expected score function is largest at
the point of 9 where the item information is a maximum. This is the reason
that the expected score functions of the five items are ordered along the 0
axis in Figure 11. It should also be pointed out that item 1 appears to have
two extreme slopes because its item information has two modes.

Unlike the category parameters of the graded item response model
(Samejima, 1969, 1972; Muraki, 1990), the item-category or category
parameters are not necessarily ordered. However, if the order of the
parameters is interchanged as in item 5, the category is depressed and the
category becomes useless in terms of the contribution of the item-category
information to the total item information. Such items are usually
undesirable.

Insert Figure 11

Information Function and Collapsing and Reordering Categorical ResponsQs
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The item-category information functions can be used to investigate the
appropriateness of collapsing or recoding of categorical responses. One item
from the 1990 mathematics cross-sectional assessment and two items from the
1990 science cross-sectional assessment of the National Assessment of
Educational Progress (NAEP) are used to illustrate the behaviors of item-
category information functions with respect to the collapsing and recoding of
categorical responses. Item parameters were calibrated by using the PARSCALE
program (Muraki and Bock, 1991).

The first example is a mathematics item with seven categories. The
scoring function is denoted as L-(1,2,3,4,5,6,7). The item parameters of
this item were estimated with other items in the assessment. Then, the sixth
and seventh categorical responses were combined and the parameters were
estimated again. The scoring function after this collapsing is denoted as
L-(1,2,3,4,5,6,6). The collapsing process was continued until only two
categories remained. The scoring function of this collapsing is denoted as
12-(1,2,2,2,2,2,2). After each collapsing, the model parameters were
estimated and the item information functions were computed. They are plotted
in Figure 12. Since the highest category was collapsed with the adjacent
categories in sequence, the peak of the item information fLaction moves to the
left along the 0 scale. In other words, by collapsing higher categorical
responses, the information about subjects with higher 0 values decreased. At
the same time, the maximum information is decreasing, except in changing from
L to /2.

Insert Figure 12 about here

The second example is a Life Science item with six categorical responses.
This item was administered to two age groups. The item response information
functions based on the item parameters estimated with the scoring function
T-(1,2,3,4,5,6) are plotted in Figure 13. The mean, vi of the total score
distribution for the subgroup in category k (k-1, 2,..., 6) of the item was
computed. The means are vi.(6.3, 7.7, 7.9, 8.3, 8.9, 10.2) and NP-(8.5, 8.8,
9.4, 9.4, 10.5, 11.9) for the first and second age groups, respectively. The
means for the first and second categories for the second age group and the
means of the third and fourth categories for both age groups were very close
for both age groups. In other words, these categories did not seem to be
differentiated. Thus, Allen (1992) decided to combine these categories
forming four categorical responses. The scoring function for this collapsing
can be denoted as Tm(1,1,2,2,3,4), and the item response functions based on
this scoring function are plotted in Figure 14. The item information
functions in Figures 5 and 6 are labeled 1+2+3+4+5+6 and 1+2+3+4,
respectively. The peak of the item information function becomes higher after
the collapsing, and the amount of information increases over the 0 scale
except at its lower end, which may be explained by the collapsing effect of
lower categories.

********1.

In.:ert Figures 13 and 14 about here
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The third example is a Physical Science item with four categorical
responses. This item was also administered to two age groups. The item
response information functions based on the item parameters estimated with the
scoring function, T-(1,2,3,4), are plotted in Figure 15. The mean vectors for
the two age groups are v..(4.8, 6.4, 6.2, 7.5) and v.-(9.3, 10.9, 10.6, 11.5).
From these statistics, it can be suspected that the original codings of the
second and third categories were inappropriate (Allen, 1992). Thus, the

orders of the second and third categories were reversed, and the scoring
function can be denoted as 1'-(1,3,2,4). The item response functions based on

this scoring function are plotted in Figure 16. The information increases
considerably over the range of 0 values from -4.0 to 4.0. The chi-square fit
statistic also improved from 370.002 with 87 degrees of freedom to 151.249
with 82 degrees of freedom. The difference, 218.753, with 5 degrees of

freedom is a significant improvement for the model fit.

Insert Figures 15 and 16 about bere

Analysis of the National Assessment of Educational Progress - Writing
Assessment

The first NAEP writing assessment was conducted in 1984 (Grime and
Johnson. 1991). Since then, four NAEP writing assessments were conducted to
assess the trend of students' writing performance over the years (1984, 1988,

1990, and 1992).

In the trend assessment, nationally representative samples of students in
grades 4, 8, and 11 respond to a serif., of writing tasks (or items). A set of

12 writing tasks were prepared to examine students' abilities to engage in
three types of writing: informative, persuasive, and imaginative. The twelve
tasks were administered in a balanced incomplete block (BIB) design with six
of the twelve tasks presented to each grade. Some writing tasks were unique
to a specific grade, and others were utilized as linking items. Students'

writirgs were scored by trained readers on the basis of students' success in
accomplishing the specific purpose of each writing task (as measured by
primary trait scoring), their relative writing fluency (as measured by
holistic scoring), and their mastery of the conventions of writing English (as
measured by their spelling, punctuation, and grammar). For this paper, only
the primary trait scores of the 1988 and 1990 assessments were analyzed.

For two writing tasks, a four-point scoring scale (Unsatisfactory through
Adequate) was used to evaluate students' writings. For the remaining four
writing tasks, a five-point scoring scale (Unsatisfactory through Elaborate)
was used. Omitted responses were not rated. In the analysis, they were
treated as the lowest categorical response (Unsatisfactory). Item parameters
were calibrated based on the combined response data of the 1988 and 1990

assessment. Since we could not assume that the latent trait distributions of
these assessments were unchanged, a separate normal prior was used for each
assessmeat year. 7orty one quadrature points were used for both prior

distributions. After each DI cycle, the means and standard deviations were

t83



computed for these distributions. After each EM cycle, the weighted mean and
standard deviation of the combined distribution of these priors are adjusted
to 0.0 and 1.0, respectively. Intermediate estimated values were also
adjusted accordingly.

The sample sizes of the 1988 and 1990 assessments are 4878 and 5606,
respectively. Forty-six ER cycles were needed for convergence, using a
criterion of 0.001. Because there were MD responses in the fifth category of
the second task in the 1990 assessment, the fourth and fifth categories of the
second task were combined for both years. Thus, the second task is treated as
an item of four categories. The estimated parameter values for age 9 are
presented in Table 1. The item information functions of these six items (or
tasks) are plotted in Figures 17, 18, 19, 20, 21, and 22. The test
information function is plotted in Figure 23.

Insert Table 1 about here

************** k***

Insert Figures 17, 18, 19, 20, 21, and 22 about here
************

Insert Figure 23 about here

* * *********

Since the slope parameter of the first item is low, the item information
function is relatively flat over the range of the 0 scale. In addition to a
low slope parameter, item 3 also has widely-dispersed category parameters.
Because of this combination, when compared to the other items, the item
information function for this item is the lowest of the six items for all
values. The slope parameter of item 4 is not extremely low compared to items
1 and 3, but the category parameters are considerably dispersed .

Consequently, the amount of information increases over the 0 scale, but the
information curve is relatively flat. The best items among the six seem to be
items 5 and 6. The amount of information for item 5 is large for the lower
end of the 0 scale because the location parameter of this item is low.
Compared to item 5, the information function of item 6 is more symmetric and
reasonably high over the range of -3 to 3 of the 9 scale. The test
information plot in Figure 23 shows that this set of six items produces a
reasonable amount of information for the range of 0.

Conclusion

The concept of information functions developed for dichotomous item
response models (Lord, 1980; Lord and Novick, 1968) is adapted for the partial
credit model. Because of the complex relationships among the parameters of
the partial credit model, the plots of the ICCCs should be a routine step for
analyses of test items. Computing and plotting the item-category and item

9



information functions based on the partial credit model is also an essential
procedure of item analyses. Information functions with other conventional
item statistics provide valuable information about how to collapse or reorder
categorical responses. It was pointed out that increasing the number of
categorical responses does not automatically increase the information about
ability levels for the entire range of the 0 scale. Assembling polytomous
items into a desirable test is also facilitated by using the information
functions. Careful investigation of each test item in terms of its
information function leads to desirable test construction methodology for
polytomously-scored items. Applications of the partial credit model to
polytomous items discussed in this paper is only an initial endeavor for this
new psychometric field. Further investigation of the partial credit model and
related concepts is needed.

10
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Table 1

Item Parameters of NAEP Writing Items:
1988 & 1990 Age 9

Item Slope Location Category Item-
Category

1 0.370 -1.362 4.015 -5.377
-4.835 3.473
0.819 -2.181

2 0.617 -0.288 2.744 -3.032
-0.747 0.459
-1.997 1.709

3 0.507 1.053 4.628 -3.575
2.083 -1.030
-1.053 2.106
-5.659 6.712

4 0.706 0.595 4.059 -3.464
0.983 -0.388
-1.351 1.946
-3.691 4.286

5 0.969 -1.114 1.844 -2.958
-0.252 -0.862
-1.592 0.478

6 0.981 0.522 2.705 -2.183
0.677 -0.156
-0.441 0.963
-2.942 3.463
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Figure 12

Item Information of Math Item
T7=(1,2,3,4,5,6,7), T6=(1,2,3,44,6,6), T5=(1,2,3,4,5,5,5)
T4=(1,2,3,4,4A,4), T3=(1,2,3,3,3,3,3), T2=(1,2,2,2,2,2,2)
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Figure 23

Test Information of the NAEP Writing Items
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